Minor Program in Computational Science

Introduction

Computational science describes the application of computing, especially high performance computing, to the solution of scientific and technical problems. Computational scientists use computers to create mathematical models that help them simulate and understand the operation of natural and mechanical processes, as well as to visualize the operation and results of these models.

Computational science (i.e., science in-silico) has become a third way of advancing knowledge along with the traditional methods of theory and experimentation. In-silico simulations and modeling afford the opportunity to "see" the unattainable – phenomena that are too small (atoms and molecules), too large (galaxies and the universe), too fast (photosynthesis), too slow (geological processes), too complex (automobile engines), or too dangerous (toxic materials). In recent years, computational studies have produced enormous advances in almost all fields of scientific and engineering inquiry, including DNA sequencing, behavioral modeling, global climatic predictions, drug design, financial systems, and medical visualization.

In recognition of the importance of computational science, the Ohio Board of Regents created the Ralph Regula School of Computational Science (RRSCS) in December 2005. RRSCS is a "virtual" school housed at the Ohio Supercomputer Center that will not offer degrees of its own but will serve to organize and coordinate statewide efforts to integrate computational science programs into the curricula at participating institutions. This effort recognizes that the field is an interdisciplinary field with expertise scattered among different departments and different institutions. The intention of the school is to sponsor shared, inter-institutional programs that take advantage of the existing expertise, make it widely available, and limit the duplication of effort and expense where possible.

The first such program is a minor program in computational science intended initially for majors in science and engineering programs at the participating institutions. The program is being initiated as a part of a National Science Foundation grant to nine Ohio higher education institutions, the Ohio Learning Network, and the Ohio Supercomputer Center that pledged to cooperate in the creation of the program. The participating institutions are shown in Table 1. Each of these institutions is separately approving the minor program so that it is officially established as a part of their degree programs. This is the proposal to do so at OSU.

A minor is the most appropriate approach to this area at the undergraduate level because domain expertise extending from a field of science, mathematics, or engineering is required to understand and implement computational modeling. The minor program also will require fewer resources to implement while helping to organize the required inter-institutional agreements and operating procedures for the program.

Table 1: Institutions Participating in the NSF CI-TEAM Grant for Computational
Science
Capital University
Central State University
Columbus State Community College
Kent State University
Ohio Learning Network
Ohio Supercomputer Center
Sinclair Community College
The Ohio State University
University of Cincinnati
Wittenberg University
Wright State University

Overview of the Minor Curriculum

The minor curriculum was created through a collaborative effort of the faculty at the participating institutions. Because of its inter-institutional nature, the curriculum is competencybased, defining learning outcomes as the basis for courses to allow for easier evaluation and approval of proposed courses. The competencies were also reviewed by a business advisory committee including major, prospective employers of our graduates. They helped to revise the proposed structure to best suit the need for graduates in the current market. The full description of the competencies is provided in Appendix A.

The proposed minor curriculum consists of five required courses and at least one elective. These are shown in Table 2. All students are required to take a year of calculus, which is part of the current requirements for the target major fields. Calculus could be taken concurrently with the introductory modeling and simulation course, but is a prerequisite for the other courses. The courses are described in the table of competencies shown in Appendix A.

In addition to the approval of the proposed minor program in Computational Science through the formal process at The Ohio State University, the courses proposed as a part of the curriculum will be reviewed by an inter-disciplinary, inter-institutional committee of computational science faculty from around the state to ensure that they meet the required competencies. The creation of course materials and conversion of existing courses to match the competencies and offer some courses at distance is being subsidized by the NSF grant and other funding at the RRSCS. The materials produced for those courses will be retained in a repository at RRSCS so that faculty can draw upon those shared materials to expand the number of courses offerings. A list of the proposed courses for the 2008-2009 academic year and where they will offered is shown as Table 3.

Coursework Requirements

The Computational Science minor requires the completion of at least 20 credits of approved coursework, including a required course in each of six designated areas and one elective, as summarized in Table 2.

Because of the inter-institutional nature of the program, students have two options for the minor courses. They can take the courses at OSU, if they are offered here, or they can take the courses at distance from one of the other participating institutions. This means that OSU is not obligated to teach every course in the program or can teach some of the courses less frequently. In the current proposal, we have identified courses at OSU that would meet or exceed the minimum competencies associated with each topic in the minor program. For some of the upper division courses that exceed the competencies, other pre-requisites are required. We also have indicated the prerequisites for the distance courses as we know them.

Required Courses

1) Simulation and Modeling: An introductory course on the use of models (continuous and discrete) and simulation in science and engineering. Such an introductory course in simulation and modeling is currently not offered at OSU. But students may take this course remotely at any other institution (offerings for 2008-2009 are listed in Table 3), or use a more advanced domain-specific course that focuses on modeling and simulation (listed in Table 2). There are no prerequisites for the distance courses at other institutions as the level of expertise and mathematics required can be met by most college freshman upon entry or at least by the Spring of their first year. The OSU courses that meet this requirement are shown in Appendix B along with their prerequisites. The focus of this course is shown in the competencies starting on page 13. The overall goal is to introduce the need for modeling and simulation as an integral part of science and engineering practice, provide an introduction to modeling concepts, review the mathematics underlying deterministic models, build an understanding of both the computational and estimation errors associated with models, introduce stochastic or Monte Carlo simulations, and demonstrate an ability to formulate, use, and explain a project model.

2) Programming and Algorithms: A first course on computational thinking, use of a programming language for problem solving, and development of algorithms. In addition to several existing courses at OSU that would satisfy this requirement, a new Matlab-based course on computational thinking in the context of science and engineering (CSE 294P) is being developed by the CSE Department (to be piloted in Spring 2009), with science/engineering students as the target audience.

3) **Numerical Methods**: An applied introduction to use of numerical methods in solving linear and nonlinear equations, interpolation, numerical solution of differential equations. Because many engineering students either take a linear algebra course or are introduced to linear algebra concepts in numerical methods and the modeling and simulation course, we do not require a linear algebra course.

4) Optimization: Courses on the topic of optimization are being developed at some other institutions in support of a Computational Science minor. A course is also being considered for

development by the IWSE department at OSU. Several departments have domain-specialized courses that focus on discrete and/or continuous optimization techniques, which may also be used to satisfy this requirement

5) Capstone Research/ Internship Experience: Each student must complete a guided research project or internship on a computational topic. The mechanism used to satisfy this requirement may differ across departments – e.g. computationally oriented senior design project or honors thesis, or a computationally oriented independent research study with a faculty member at Ohio State. The Ralph Regula School also plans to create a list of computationally oriented projects contributed from faculty at the participating universities; such a guided project can also be used to satisfy the capstone requirement. At OSU, the CSE Department will maintain a list of computational projects from faculty at Ohio State, and coordinate the matching of interested students with faculty guiding the projects. A student from any department may register for CSE 699 if they choose one of these computational projects for satisfying the computational capstone requirement.

6) Domain-Specific Course: Any approved computationally oriented course from the student's major discipline.

Elective Courses

At least one elective course must be completed, chosen from any of the following topics.

a) Differential Equations and Dynamical Systems: A course on numerical solution of differential equations, which are fundamental in modeling physical and biological systems. Many engineering majors are required to take differential equations as are those in some of the physical sciences. We did not make this a requirement in the minor program to accommodate majors in the biological sciences and fields where other mathematical or analytical approaches are more prevalent.

b) Parallel Computing: An introduction to parallel programming, parallel algorithm development, implementation and optimization. Courses offered at distance in this area generally require an introductory computer algorithms or related programming course as a prerequisite.

c) Scientific Visualization: An introduction to tools and techniques for visualization of largescale data produced by computational simulations. A version of this course will be offered by OSU CSE in Spring 2009.

Administration and Advising

The minor in Computational Science will be open to any undergraduate student at the Ohio State University. The Computer Science and Engineering department will serve as a primary agent for the proposed program, but a Computational Science Advisory Committee will be formed, with broader membership. The Committee will be chaired by a faculty member from CSE (appointed by the Department Chair), and it will include an additional faculty member from the College of Engineering (appointed by the Associate Dean of Undergraduate Education and Student Affairs), one faculty member from the College of Mathematical and Physical Sciences (appointed by the Associate Dean), and the Director of the Ralph Regula School of Computational Science. The Committee will meet at least once every year to review the minor curriculum and course offerings, and make revisions as necessary.

The undergraduate counseling office of the Department of Computer Science will assist with student advising for the Computational Science minor. It will make available a form that students may use to declare the Computational Science minor. Any petitions for substitution of alternative courses (taken at Ohio State or another university) to satisfy the requirements of the minor must be approved by the Computational Science Advisory Committee.

Because this minor program is unique and generally outside the required curriculum of CSE majors, we are requesting that the minor be available to CSE majors.

For the capstone course, we expect the committee to create a set of general guidelines that will be given to the faculty with potentially eligible courses. The guidelines will ensure that approved courses or internships have sufficient computational applications to qualify as a capstone for this minor program. Faculty will be asked to sign a form indicating that a particular course meets the guidelines and to submit the final summary reports from the projects annually to the minor program committee. This will allow the committee to evaluate whether the capstone courses are continuing to meet the guidelines as well as provide important information on the overall effectiveness of the program.

Торіс	Courses	Required/Elective
Prerequisites		
Calculus	Math 151, 152, 153 (or	
	equivalent, e.g. Math 161,	
	162 or Math H190, H191)	
Core Courses		
Simulation and Modeling	One of: CEG 640, CSE	Required
-	778, ISE 521, 704, ME	-
	785, MSE 533	
Programming and	One of: CSE 202, CSE	Required
Algorithms	294P, CSE 221	
Numerical Methods	One of: AAE 581, CEG	Required
	406, CSE 541, ECE 715,	1
	Math 606, Math 607, ME	
	250	
Optimization	CEG 776, ECE 759, ISE	Required
•	522, ME 761, MSE 600	1
Discipline Specific Cours	es	
Capstone	CE 660, CSE 699 or	Required
Research/Internship	H783,ME 564 or 565,	-
Experience	MSE 695 or other	
-	approved individualized	
	research credits	
Discipline-specific	CSE 630, 655, 660, 670,	Required
Computationally oriented	675, 680, Chem 644, MSE	
Course	756, Phys 780	
Elective: Choose at least	one course from the followi	ng
Differential Equations	Math 255, Math 415,	Elective
and Discrete Dynamical	Math 568, Math 571	
Systems		
Parallel Programming	CSE 621	Elective
		1
0 0		

Table 3: Proposed Courses for 2008-2009 Academic YearRalph Regula School of Computational Science			
Course Number and Title	Institution / Instructor	Quarter or Semester*	Credit Hours
PHY 212 Introduction to Modeling and Simulation	Sinclair Community College / Art Ross & Bob Chaney	Winter quarter 2009	4
PHY 220 Introduction to Computational Physics	Sinclair Community College / Art Ross	Spring quarter 2009	5
CSAC 245 Introduction to Computational Science	Capital University / Dr. Patrick Shields	Fall semester 2008	3
BSCI-50/70195 BSCI 40195/ BTEC-40220 ST: Bioinformatics	Kent State University / Dr. Helen Piontkivska	Fall semester 2008	3
20-CS-668 Parallel Computing	University of Cincinnati / Dr. Fred Annexstein	Fall Quarter 2008	3
Chem 644 Computational Chemistry	The Ohio State University / Dr. Richard Spinney	Fall Quarter 2008 Classroom only	3
CSE 694L Data and Information Visualization Description	The Ohio State University / Dr. Raghu Machiraju	Spring Quarter 2009	4
COMP 345 Optimization	Wittenberg University / Eric A. Stahlberg	Fall Semester 2008 Classroom only	3
MATH 299 Special Topics: Differential Equations and Discrete Dynamical Systems	Columbus State Community College / John Nedel	Spring quarter 2009 Classroom only	6
CS/PBIO 416/516 Problem Solving with Bioinformatics Tools	Ohio University / Dr. Lonnie Welch and Sarah Wyatt	Spring Quarter 2009	4
CS 412 Parallel Computing	Ohio University / Dr. Frank Drews	Spring Quarter 2009	5
CST120 Computational Science Methods	Stark State Community College / Robert Berens	Fall Semester 2008 Classroom only	3
CST121 Introduction to Modeling and Simulation	Stark State Community College / Karen Hardesty	Spring Semester 2009 Classroom only	3
CSA 443 High Performance Computing and Parallel Programming	Miami University / Dr. Dhananjai M. Rao	Spring Semester 2009	3
15PHYS410 Computational Physics	University of Cincinnati / Richard Gass	Spring Quarter 2009	3

*All courses offered at distance unless otherwise indicated.

Some of the courses will be given temporary course numbers for the first year as they go through the approval process for a permanent course number at the participating institutions.

The RRSCS will maintain a central website that students and faculty can use to see what courses and being offered. The site will also show how to register for courses being offered at other

institutions. The proposed mechanisms for these procedures are currently being discussed and are discussed briefly below. The proposed inter-institutional agreements have been discussed at all of the participating institutions and we are working with the appropriate offices to implement those agreements. The agreement is shown as Appendix B.

Inter-institutional Arrangements

As part of the NSF project, a subcommittee of representatives of academic affairs officers and registrars has been meeting to discuss the inter-institutional arrangements for the minor program. They have agreed in principle to several things:

- The registration process for students should be as easy as possible.
- **RRSCS** should maintain a list of approved courses by year so it is relatively easy to conduct degree audits.
- Transfer of credits from other institutions can be handled by the registrars at the institutions as those courses are completed.
- Tuition will be collected at the home institution of the student based on the total number of credit hours taken including hours taken from other institutions and charged at the home institution rate.
- There should be some compensation given to the institutions teaching courses to students at other institutions in lieu of tuition.
- Petitions for exceptions to the required curriculum and other individual advising will remain solely at the home institution.
- Mechanisms for changes and additions to the minor curriculum should be undertaken by the RRSCS and a statewide committee of faculty.

Appendix A

Computational Science Minor Program Detailed Program Description

Ralph Regula School of Computational Science Cyberinfrastructure Team Project Summary of Undergraduate Minor Program Requirements September 2006

The minor in computational science will be offered by a number of higher education institutions in Ohio. Degrees will be offered by the students "home" institution but it will possible for the student to take minor program materials from other, participating institutions. We have started with a minor because we believe that each student needs some domain expertise in a major field before being able to complete computationally-based projects in related areas.

There is a committee reviewing the various options for the sharing of materials, instruction, and revenues associated with cross-registered students. They will make some recommendations to the participating institutions in the coming months on the institutional procedures.

Because of the inter-institutional nature of the program, we have designed it to be competencybased. The instructional materials associated with each competency or subset of competencies can then be embedded either in existing courses on each campus, in new courses at one or more campuses, or as stand-alone modules that might be taken at distance and at the time that each student is ready for them. Competency will then be demonstrated through one or more assessments of the student's abilities on a combination of exams and projects. The competencybased approach is preferred because it gives curriculum flexibility to participating programs and gives employers some assurance of the working knowledge of each graduate.

The draft competencies created by the participating faculty has been reviewed by a business advisory committee. They confirmed the majority of the recommended competencies at a meeting on May 31, 2006 and offered some advice on topic emphasis and breadth. This document reflects their comments and is the basis on which faculty are currently proposing instructional modules that meet the competencies.

The computational science minor will enable science and engineering majors to apply computational tools to the problems in their discipline. As such, the minor breaks into three broad categories: Prerequisites, the Computational Science Core Competencies and the Discipline Specific Competencies. At this stage, we are focused on the competencies that comprise the Computational Science Core. The goal of the Core competencies is to establish a foundation that can be leveraged in the Discipline Specific Competencies that are directly applicable to the practice of the student's chosen profession. The competencies are shown in Table 1.

Our remaining decisions involve deciding what competencies are associated with each broad area, how many elective competencies are required for the minor, and the specific competencies for each discipline-oriented course. Those will be addressed in Autumn 2006 as we begin to pretest the materials in classrooms around Ohio.

Table 1: Competencies and Requirements for Undergraduate Computational Science Minor		
Торіс	Subtopics	Required/Optional
Prerequisites		
Calculus 1 and 2		Required
Computational Science		
Courses		
Simulation and Modeling	Should use one of the major symbolic programs Maple, MATLAB, Mathematica; need to local, hands-on support at outset of course	Required
Programming and Algorithms	Logic of programming whether a traditional computer science or programming with a symbolic language like Maple, MATLAB, Mathematica	Required
Differential Equations and Discrete Dynamical Systems	Depending upon major; linear algebra may also be needed by some	Elective
Numerical Methods	Need for a project-based course which touches the most important topics rather than a standard math course	Required
Optimization	An important topic; could be part of a modeling course or integrated with numerical methods	Required
Parallel Programming		Elective
Scientific Visualization		Elective
Discipline Specific Courses		
Capstone Research/Internship Experience		Required
Discipline Oriented Courses		One required; probably only one per field for awhile

Minor Program in Computational Science Competency/Topic Overview Area 1: Simulation and Modeling

Competency/Descriptors
Explain the role of modeling in science and engineering
Descriptors:
Discuss the importance of modeling to science and engineering
Discuss the history and need for modeling
Discuss the cost effectiveness of modeling
Discuss the time-effect of modeling (e.g. the ability to predict the weather)
Define the terms associated with modeling to science and engineering
List questions that would check/validate model results
Describe future trends and issues in science and engineering
Identify specific industry related examples of modeling in engineering (e.g., Battelle;
P&G, material science, manufacturing, bioscience, etc.)
Discuss application across various industries (e.g., economics, health, etc.)
Analyze modeling and simulation in computational science
Descriptors:
Identify different types of models and simulations
Describe a model in terms of iterative process, linking physical and virtual worlds and
the science of prediction
Explain the use of models and simulation in hypothesis testing (e.g. scientific method)
Create a conceptual model
Descriptors:
Illustrate a conceptual modeling process through examples
Identify the key parameters of the model
Estimate model outcomes
Utilize modeling software and/or spreadsheets to implement model algebraic equations
(e.g. Vensim, Excel, MATLAB, Mathematica)
Construct a simple computer visualization of the model results (e.g. infectious disease
model, traffic flow, etc.)
Validate the model with data
Discuss model quality and the sources of errors
Examine various mathematical representations of functions
Descriptors:
Describe linear functions
Define non-linear functions (e.g., polynomials, exponential, periodic, parameterized,
etc.)
Visualize functions utilizing software (e.g. Excel, Function flyer, etc.)
Determine appropriate functional form to fit the data
Demonstrate essential mathematical concepts related to modeling and simulation
Analyze issues in accuracy and precision
Descriptors:
Describe various types of numerical and experimental errors
Explain the concept of systematic errors

Explain the concept of data dependent errors Illustrate calculation and measurement accuracy Identify sources of errors in modeling and approaches to checking whether model results are reasonable Understand discrete and difference-based computer models **Descriptors:** Explain the transition of a continuous function to its discrete computer representation Represent "rate of change" using finite differences Cite examples of finite differences Explain derivatives and how they relate to model implementation on a computer Write pseudo-code for finite difference modeling Demonstrate computational programming utilizing a higher level language or modeling tool (e.g. Maple, MATLABTM, Mathematica, other) **Descriptors:** Describe the system syntax (e.g., menus, toolbars, etc.) Define elementary representations, functions, matrices – arrays, script files, etc. Explain programming and scripting processes (e.g., relational operations, logical operations, condition statements, loops, debugging programs, etc.) Create tabular and visual outputs (e.g., 2-D and 3-D subplots) Translate the conceptual models to run with this system and assess the model results (e.g. traffic flow and/or "spread of infectious disease") Illustrate other people's models utilizing the modeling program **Assess computational models Descriptors:** Assess problems with algorithms and computer accuracy Discuss techniques and standards for reviewing models Verify and validate the model Discuss the differences between the predicted outcomes of the model and the computed outcomes and relevance to the problem Discuss the suitability and limits of the model to address the problem for which the model was designed **Build event-based models Descriptors:** Describe event-based modeling (e.g. SIMULINK^{TM;} Extend, ARENA) Run existing models Translate conceptual models (e.g., traffic flow utilizing SIMULINKTM) Complete a team-based, real-world model project **Descriptors:** Identify a problem, create mathematical model and translate to computational modeling Organize and present project proposal Document model development and implementation Collaborate with team members to complete the project **Demonstrate technical communication Descriptors:** Demonstrate technical writing skills in the comprehensive report

Demonstrate verbal communication skills in an oral presentation Create and present visual representation of model and results Address all components of a comprehensive technical report Respond to peer review

Minor Program in Computational Science Competency/Topic Overview Area 2: Programming and Algorithms

Competency/Descriptors
Describe the fundamentals of problem solving
Descriptors:
Understand Top-Down thinking and program design
Discuss breaking up a problem into its component tasks
Understand how tasks acquire data
Describe how tasks should be ordered
Represent tasks in a flow-chart style format
Understand the difference between high-level languages (for example Mathematica,
Maple or MATLAB), medium level languages (for example FORTRAN or C) and low-
level languages (assembler) and when each should be used.
Understand and write Pseudo code
Descriptors:
List the basic programming elements of Pseudo code
Explain the logic behind an if/then/else statement
Understand the iterative behavior of loops
Describe the difference between several looping constructs
Write Pseudo code to solve basic problems
Understand how to represent data flow in and out of subprograms.
Use subprograms in program design
Descriptors:
Describe how logical tasks can be implemented as subprograms
Understand the logical distinction between functions and subroutines
Explain the control flow when a function is called
Define dummy and actual arguments
Discuss the different relationships dummy and actual arguments
Explain how function output is used
Understand how languages handle passed data into functions and subprograms,
especially one and two dimensional arrays.
Write code in a Programming language
Descriptors:
Understand the concept of syntax in a programming language
Describe the syntax of the programming language constructs
List the type of subprograms available in the language
Explain the concepts of argument pass-by-value and pass-by-reference
Understand what a compiler and linker do
Understand the difference between a compiled and interpreted language
Understand the difference between a typed and an un-typed language
Understand the difference between a source file and an executable file
Write and run basic programs in the language of choice
Understand how to de-bug code and how to"sanity check" code.
Understand the importance of user-interfaces: clear input instructions including physical

units if needed and clearly formatted and labeled output
Understand the numerical limits of various data types and the implications for numerical
accuracy of results.
Use different approaches to data I/O in a program
Descriptors:
Explain the advantages and disadvantages of file I/O
Describe the syntax for file I/O in your programming language
Compare binary and ASCII file I/O
Write code using file I/O and keyboard/monitor I/O
Understanding and use of fundamental programming Algorithms
Descriptors:
Explain an algorithm as an ordered series of solution steps
Describe an algorithm for a simple programming problem
Learn and use "classic" programming algorithms from a field of interest to the student.
If possible, these should be algorithms used in the student's discipline.
Describe what a software library is
Understand how library functions implement algorithms
Write code to implement your own version of "classic" algorithm
Compare with code using a library function
Understand data flow into library functions and implications of selecting any "tuning
parameters" or options that may be required.
Explain various approaches to Program Design
Descriptors:
Describe Functional decomposition (Top-down Problem Solving)
Be familiar with different programming styles (e.g. function, procedural, rule based)
Understand how to modularize code
Understand the benefits of code re-use
Explain the operation of a Boss-Worker design
Compare designs based on Global Variables vs. self-contained functions
Define Object-Oriented Programming (OOP)
Contrast OOP with functional decomposition
Explain the power of Inheritance in OOP
Understand how to document code
Understand how to write and when to use stubs and drivers.

Minor Program in Computational Science Competency/Topic Overview Area 3: Differential Equations and Discrete Dynamical Systems

Competency/Descriptors

Describe the solution methodology for first order linear differential and difference equations

Descriptors:

Analyze modeling problems with first order differential equations and present their solution methodology (e.g. liner, homogeneous, exact)

Analyze modeling problems with first order difference equations and present their solution methodology (e.g. homogeneous, non-homogeneous). Analyze long term behavior

Describe the solution methodology for systems of linear first order differential and difference equations

Descriptors:

Describe modeling problems with systems of first order differential equations and present their solution methodology (e.g., homogeneous with constant coefficients, variation of parameters)

Describe modeling problems with systems of first order difference equations and their solution methodology (e.g., homogeneous with constant coefficients)

Describe the solution methodology for higher order differential and difference equations

Descriptors:

Describe modeling problems with higher order differential equations analyze their solution methodology (e.g., homogeneous, non-homogeneous, undetermined coefficients, variation of parameters)

Describe modeling problems with higher order difference equations analyze their solution methodology (e.g., homogeneous, non-homogeneous). Analyze the long-term behavior.

Describe the solution methodology for differential equations using the Laplace Transforms

Descriptors:

Discuss the Laplace transformation of (e.g., continuous, discontinuous, delta and convolution) functions

Describe modeling problems with differential equations and present their solution methodology using Laplace transformations (use of CAS, Maple, Mathematica)

Describe the solution methodology for non-linear differential equations Descriptors:

Describe the concept of an equilibrium point

Model with non-linear differential equations and present the phase –portrait analysis Understand and demonstrate how chaos is generated in the solution process of nonlinear differential equations.

Describe the solution methodology for non-linear difference equations Descriptors:

Describe the method of linearization

Describe the concepts of Logistic and Henon Maps

Model with non-linear difference equations and demonstrate understanding of

fundamental concepts from Bifurcation theory (e.g., fixed, periodic points, chaos)

Describe techniques for controlling chaos

Understand concepts of numerical accuracy applied to each solution approach

Minor Program in Computational Science Competency/Topic Overview Area 4: Numerical Methods

Competency/Descriptors
Understand number representation and computer errors
Descriptors:
Understand the pros and cons of floating point and integer arithmetic
Describe various kinds of computing errors (e.g., round-off, chopping)
Describe absolute, relative error and percent error
Discuss error propagation
Describe loss of significance – methods to avoid loss of significance
Analyze methods for solving non-linear equations
Descriptors:
Discuss and contrast fixed point methods (e.g., bisection, secant, Newton's) for a single
equation
Describe a fixed point method for a system of equations (e.g., Newton's)
Describe techniques for solving systems of linear equations
Descriptors:
Describe the naïve Gauss elimination and the partial pivoting method
Understand the concepts of condition number and ill-conditioning problems
Discuss and contrast factorization methods (e.g., LU, QR, Cholesky, SVD)
Discuss and contrast iterative methods (e.g., Jacobi, Gauss Siedel)
Describe convergence and stopping criteria of iterative methods
Analyze techniques for computing eigenvalues—eigenvectors (Optional)
Descriptors:
Describe and give examples of eigenvalue –eigenvector problems using specific, applied
examples and their significance
Describe canonical forms of matrices
Describe and contrast direct methods for computing eigenvalues (e.g., power method,
inverse power method)
Describe and contrast transformation methods (e.g., QR algorithm)
Describe interpolation and approximation methods
Descriptors:
Describe and contrast interpolation methods (e.g., Lagrange, Chebyshev, FFT)
Describe interpolation with spline functions (e.g., piecewise linear, quadratic, natural
cubic)
Discuss approximation using the method of least squares (linear .vs. non-linear)
Describe numerical methods for Ordinary Differential Equations
Descriptors:
Describe and compare basic methods for IVPs (e.g., Euler, Taylor, Runge-Kutta)
Describe and compare predictor-corrector methods
Describe and compare multistep methods
Discuss and contrast numerical methods for BVPs (e.g., shooting method, finite
difference method)
Compare the accuracy, memory requirements, and precision of each of the approaches

Describe numerical methods for Partial Differential Equations
Descriptors:
Describe and compare numerical methods for parabolic PDEs (e.g., finite difference,
Crank-Nicolson)
Describe numerical methods for hyperbolic PDEs
Describe numerical methods for elliptic PDEs (e.g. finite difference, Gauss-
Seidel)
Discuss the finite element method for solving PDEs
Describe Monte Carlo Methods
Describe applications of Monte Carlo models with examples
Discuss algorithms for Monte Carlo methods

Minor Program in Computational Science Competency/Topic Overview Area 5: Optimization

Describe and use Optimization techniques Descriptors:

Describe and contrast unconstrained optimization methods (e.g., Golden section search, Steepest descent, Newton's method, conjugate gradient, simulated annealing, genetic algorithms)

Describe and contrast constrained optimization methods (e.g., Lagrange multiplier, quasi-Newton, penalty function method

Implement linear and non-linear programs

Analyze linear programming methods (e.g., simplex method) Describe non-linear programming methods (e.g., interior, exterior, mixed methods)

Demonstrate ability to correctly use software systems (e.g., Matlab, IMSL, NAG) to solve practical optimization problems

Minor Program in Computational Science Competency/Topic Overview Area 6: Parallel Programming

Competency/Descriptors
Describe the fundamental concepts of parallel programming and related
architectures
Descriptors:
Describe the differences between distributed and shared memory architectures
Describe the difference between domain and functional decomposition in parallel
Describe a parallel programming approach to an introductory problem
Compare parallel, distributed, and grid computing concepts
Demonstrate parallel programming concepts using MPI
Descriptors:
Describe the MPI programming model
Create, compile, and run an MPI parallel program
Create MPI programs that utilize point-to-point communications
Create an MPI program that uses point-to-point blocking communications
Create an MPI program that uses point-to-point non-blocking communications
Create an MPI program that uses collective communications
Create an MPI programs that use parallel I/O
Create MPI programs that use derived data types
Create MPI programs that use vector derived data type
Create MPI programs that use structure derived data type
Demonstrate knowledge of parallel scalability
Descriptors:
Use mathematical formulas to determine speed-up and efficiency metrics for a parallel
algorithm.
Demonstrate the use of graphical systems such as MATLAB to display speed-up and
efficiency graphs
Demonstrate knowledge of parallel programming libraries and tools
Descriptors:
Demonstrate the use of performance tools for profiling programs (e.g., GNU GPROF or
MATLAB profiler)
Create parallel programs with calls to parallel libraries (e.g. BLAS, BLACS,
ScaLAPACK or FFTW)
Demonstrate the use of MPI tracing tools (e.g., VAMPIR) to determine parallel
performance bottlenecks

Minor Program in Computational Science Competency/Topic Overview Area 7: Scientific Visualization

Compatency/Descriptors
Competency/Descriptors
Define SciVis needs; relationships to human visualization; basic techniques
Define Scientific Visualization (Sci Vis)
Discuss needs of SciVis (in the framework of a large variety of possible application
areas)
Survey different platforms for Visualization (e.g. AVS, VTK, OpenGL, VRLM)
Discuss the different techniques and visualization methods used in SciVis
Explain the human visualization system – capabilities and perceptions
Explain the different steps in the visualization pipeline
Discuss different sources of data for SciVis and explain the terms applied to data types
(i.e. scalar, vector, normal, tensor)
Discuss different types of grids (e.g., regular vs. irregular grids)
Discuss the different methods used to gather data
Describe and explore the use of different file formats for sharing data (netCDF, XML,
TIFF, GIF, JPEG, Wavefront OBJ)
Discuss limitations of different methods
Discuss future applications in emerging fields
Metadata needs for graphics libraries
Overview of computer graphic concepts
Descriptors:
Overview of SciVis concepts (pixels, rgb colors, 3D coordinate system, mapping 3D
data to a 2Dscreen, continuous vs. discrete)
Discuss polygonal representation
Discuss lighting/shading
Overview of classification/segmentation and transfer functions
Discuss concept of rendering pipeline (no details about matrices)
Discuss hardware rendering (mainly for polygonal models, few specialized volumetric
hardware cards)
Identify terms used in virtual space and in graphics elements
Navigate in virtual space and manipulate primitive objects
 Transform: scale, rotate, translate)
 Manipulate surface
 Manipulate lighting and camera
Explore colormaps and examine conceptual definitions for different color maps
(pertaining to color spaces HSV, RGB, etc.) as related to representing data and
relationships to perception
Describe approaches to visualization for different scientific problems
Descriptors:
Examine different computational solutions to scientific problems
Explain the different techniques used in visualization (i.e. glyphs, iso-contours,
streamlines, image processing, volume-data)
Examine the application of problems to visualization techniques

Utilize software tools to implement visual image of a solution Discuss the use of time in animation **Utilize software to implement grid representations of data**

Utilize software to implement grid representations of data Descriptors:

Identify the various cell representations (i.e. points, polygons, 3d geometries) Discuss the application to different grid types (i.e. structured, unstructured, random) Discuss raycasting methods and texture mapping Examine the details of raycasting sampling (FAT(low resolution sampling), interpolation techniques). Examine algorithms: Direct Composite, SFP, use of transparency. Identify the grid representation and data(color reps.) (regular grids, 1, 8, 24 and 32 bit color information) Discuss algorithms for manipulating images, distortion, fft's, enhancement, restoration, frequency domains Utilize software to implement different grid types

Discuss limitations of grids

Use visualization software to display an isosurface
Descriptors:
Discuss different data types used: scalar vs. vector data
Discuss the different grid types
Discuss the different algorithms (Marching Cubes etc)
Introduce details of the system being used in a course (e.g., VTK, AVS, etc.)
Apply the system to extract and display an isosurface of some data set (could be tailored
towards the teacher's and student's interests/application areas)
Discuss limitations of these methods
Use visualization software to complete a volumetric rendering
Descriptors:
Discuss direct volumetric rendering (raycasting and texture mapping) and its
advantages/disadvantages vs. surface rendering
Discuss segmentation/classification and transfer functions
Discuss and illustrate how to use a system (VTK, AVS, etc.) to do volumetric rendering)
Using the system, visualize a data set using raycasting
Using the system, visualize a data set using texture mapping
Discuss limitations of this method
Utilize visualization software to visualize a vector dataset
Descriptors:
Discuss vector data
Discuss different methods for vector visualizing (particles, stream ribbons, vector
glyphs, etc.)
Discuss the use of structured grid types: (ir)regular, cylindrical, spherical
Discuss application areas for vector visualization (air flow, etc.)
Using a system (VTK, AVS, etc.), visualize a vector data set
Discuss limitations of this method
Explore examples of image processing
Descriptors:
Discuss basic steps and goals in image processing
Discuss variety of data sources of images and how they can be represented
Discuss algorithms used for image processing
Explore examples of image processing (e.g., noise reduction, image enhancement,
feature extraction etc)
Discuss challenges and limitations in image processing
Use advanced techniques applied to a real problem
Descriptors:
To be chosen by instructor based on instructor/student interest. Among suggested topics
are:
- visualizing an irregular grid;
- visualizing a data set specific to the area of interest (see 3.2 and 3.3 for specific
examples)
- writing a segmentation tool
- implementing a visualization algorithm from scratch (such as marching cubes or
raycasting)
Examine SciVis problems for Biological Sciences – "OMICS" applications

Descriptors:

Examine different problems existing in 'OMICS sciences that require visualization solution (overview)

Discuss challenges of representing biomedical/biological data (i.e., representing protein structure or genomic sequence with all their attributes as a visual metaphor) Discuss challenges associated with visualization of scattered data such as text information and bioinformatics data (e.g., phylogenetic information) Gene finding in genomic sequences

- Examine different components of a gene structure
- Visualize genomic structure of an individual gene
- Build a comparison between genomic features from several genomes
 - Visualize (and examine) similarities and differences
 - Discuss goal-dependent options of parsing the results to be explored elsewhere (e.g., as plain text, XML-marked)

Protein folding and protein structure prediction

- Discuss the differences between protein folding and protein structure prediction
- Explore different methods used in protein folding and structure prediction
- Apply different methods of protein structure prediction and compare the results

• Construct, visualize and examine structure-based protein alignment Biological networks (e.g., protein-protein or protein-DNA interaction networks) Visualization of various types of expression data

- Discuss and contrast different types of expression data e.g., microarray gene expression data, protein expression data
- Discuss different visualization (and analyses) techniques used for expression data
- Apply (and compare outcomes) hierarchical clustering and k-means clustering to the same gene microarray expression data
- Discuss pros and cons of different clustering methods, their shortcomings, and ways to access the quality of clusters

Discuss potential applications of SciVis techniques in biomedical and drug design fields Utilize MATLAB to implement/solve the above problems

Explore SciVis techniques in BioMedical applications Descriptors:

Explore a variety of biomedical applications of SciVis to explore large datasets such as MRI and confocal microscopy data

Overview of volume visualization techniques in biomedical problems

Examine and different ways MRI (Magnetic Resonance Imaging) data can be visualized (e.g., 2-D image versus isocontour slices).

Discuss potential applications (interpretation) of each of the techniques.

Utilize software tools (MATLAB, VTK) to apply the techniques above

RALPH REGULA SCHOOL OF COMPUTATIONAL SCIENCE CONSORTIAL AGREEMENT

REGULA SCHOOL CURRICULUM

Institutions participating in the Ralph Regula School of Computational Science will offer a multi-institutional, interdisciplinary undergraduate minor in computational science with courses starting in the fall of 2007. The effective date of this agreement will be August 15, 2007. Standardized certificate programs to create workforce knowledge and skills valued by industry also are under development. Graduate courses will be added by 2009. The undergraduate minor curriculum offering for 2007-2008 is as follows:

Course Title and Number	Institution/Instructor	Quarter or Semester*	Credit Hours
CS 399 Selected Topics in Computational Science Programming and Algorithms	Wright State Ronald Taylor, Computer Science	Fall quarter 2007	4
Special Topics Introduction to Modeling and Simulation Part 1	Sinclair Art Ross Physics	Fall quarter 2007	2
Special Topics Introduction to Modeling and Simulation Part 2	Sinclair Art Ross Physics	Winter quarter 2008	2
Computational physics	Art Ross Physics	Spring quarter 2006	4
CSAC 245 Introduction to Modeling and Simulation	Capital University John Philips and Pat Shields	Fall semester 2007	3
Bioinformatics	Kent State Helen Piontkivska	Fall semester 2007	3
Parallel and Distributed Computing	Univ. Cincinnati Fred Annexstein	Fall quarter 2007	3
Computational Physics 15PHYS410	Univ. Cincinnati Richard Gass	Spring 2008	3
Computational Thinking in Context CSE294 (Programming and Algorithms)	OSU, CSE P. Sadayyapan	Spring, 2008 Classroom only	4
Chem 644 Computational Chemistry	Chris Hadad OSU	Spring, 2008 Classroom only	3
Optimization	Wittenberg	Still pending	5
CPS3465 Parallel Programming	Robert Marcus Central State	Spring Semester 2008	3
Differential Equations Using Computation, MATH299	Columbus State	Summer quarter 2008	6

*All courses offered at distance unless otherwise indicated.

The full curriculum description can be found at:

http://www.rrscs.org/docs/competencyfinal.pdf

Regula School Initial Participating Institutions

Capital University Central State University Columbus State Community College Kent State University Ohio State University Sinclair Community College University of Cincinnati Wittenberg University Wright State University

Terms

- Home Institution: The institution where the student is admitted as a student. Home students "visit" other institutions through Regula School courses
- **Host Institution:** The institution where the Faculty of Record (primary course instructor) is employed. Host institutions "teach" the Regula course.
- **Participating Institutions:** Colleges and universities that elected to participate in sharing courses through the Regula School.
- **Faculty Coordinators:** At least one faculty member at each participating institution responsible for assisting students to register for courses, shepherding courses for approval by deans, department heads and curriculum committees, arranging course technical support, as needed, and communicating with their Home Registrar and the Regula School.
- Registrar Contacts: The staff in the Office of the Registrar of participating institutions who are responsible for sending and/or receiving Regula -related information to the Faculty Coordinators, the Host or Home Registrars Contacts, and the Regula School
- **Technical Contacts:** The staff at participating institutions responsible for providing various related technical support (video conferencing, student support services, etc.)
- Visiting Students: Students from institutions other than the Host Institution, who participate in Regula School courses.

REGULA SCHOOL START UP SUPPORT

To ensure that students have continual access to Regula School courses, the School will assist institutions with start-up costs. Each institution will provide the agreed upon course with the faculty-approved competencies for \$3000 one time for an offering of the course. The courses and contracted institutions are listed above.

REGISTRATION PROCESSES

Regula School course information and schedule is made available through the Regula School website and the websites and print catalogs of all participating institutions (http://www.rrscs.org).

Once a course has been approved through its local curriculum review process and/or designated for a Regula course, that information will be posted at the host institution on their website, on-line catalog, and course management system (if available) and shared with the Regula School. If faculty approval is required by a student interested in registering for the Regula course, the Faculty Coordinator at each institution will secure approval for the student.

Supplementary Regula School course information will be available for student viewing on the Regula School web site (<u>http://www.rrscs.org/minorcourses/index.shtml</u>)

The Regula School will maintain an informational web site for students to gain knowledge about the course and curriculum, internships, and job possibilities. The Regula School will link to each participating institution's policies related to class calendars and dates for adds, drops, withdrawals, grade translations. This web site will stress that students register for courses through their Home Institution and not through this web site. Faculty Coordinators will provide Regula course information to the Regula School for publication on the RRSCS web site.

Students register and pay tuition for Regula course(s) at their Home Institution. To provide the information required by the registrars to track cross-registering students, students will be asked to fill out a common form for each course enrollment as a visiting student. The procedure used will be:

- 1. When a student fills out the special common form (Application for Host Institution Class Enrollment attached to this agreement) registrars at each participating home institution will add a specially tagged course number or a placeholder class on their schedule to enroll them in the class. A long-term goal of the consortium will be to cross-list all Regula School courses in the regular catalogs to facilitate registration and grade transfer procedures. The RRSCS website will have information about the course calendar for each such course and students will need to comply with the calendar at the host institution. The home institution will inform the student that, in cases where the home and host institutions differ in academic calendar systems (i.e., semester vs. quarter), the term associated with the home institution's placeholder course may not correspond to the actual term associated with the course taught at the host institution.
- 2. Students will register for the course at their home institution using regular registration procedures.
- 3. In addition, students will fill out the Application for Host Institution Class Enrollment, sign it, and turn it in at their home institution registrar's office. When faculty approval is required for registration, Faculty Coordinators will obtain approval for registration. Based on the local enrollment systems, each Regula School course will reserve one half of the enrollments in each class for the visiting students up to 30 days prior to the start of the class and after that time, class enrollment should become open to all students. To assist this process, registrars and Faculty Coordinators will meet online once per term.
- 4. Once the Application for Host Institution Class Enrollment has been received, the home registrars will fax the completed form to the host registrar who will, in turn, add the student to their local database and register the student for the hosted course, and notify the home institution of

completion of the registration process. This process will be facilitated electronically when those capabilities are in place through the Ohio Board of Regents.

- 5. The host institution will then notify the student that they are registered and transmit the procedures for them to obtain access to course materials and other host institution systems. Students will be given the same privileges as local students. As required, network IDs and Passwords are mailed to Regula students by the appropriate administrative office at the host university.
- 6. Host/Teaching and Home Registrar Contacts will distribute course rosters. The Host/Teaching Registrar Contact will send the complete course roster (including visiting students and regular students) to the Faculty/Instructor of Record per usual systems. The Home Registrar Contact will send a course roster of only the visiting students from that institution to their local Faculty Coordinator. All participating Registrars will send an email to the Regula School that summarizes the institution's final student enrollment numbers (undergraduate and graduate) in the shared course. This email to the Regula School should NOT include specific student information, only numbers of undergraduate and graduate students enrolled and their home institutions
- 7. **Drops/adds/withdrawals will be managed and communicated by Host/Teaching and Home Registrar Contacts.** Students will agree to abide by the calendar of the teaching institution in term of dates for withdrawal, penalties, and final grades. This information will be posted on the RRSCS website and the teaching institution site. Home Institution procedures and policies are followed regarding any administrative fees that are charged for add/drop activity, late enrollment processing, etc. Withdrawals should be made through both the home and host institutions. As a secondary measure, the home institution also will communicate the student's withdrawal to the host institution's registrar. Mechanisms to track drops will need to put into place to allow this information exchange.

GRADES AND TRANSCRIPTS

Grading Policies

Grade conversions will happen at the Home Institution. The Faculty of Record will submit all student grades (visiting and regular) to the Host/Teaching Registrar Contact using the grading scale of the Host/Teaching Institution.

Upon completion of the academic term, the host institution will notify the home institution of the final grade in the course and number of credit hours completed. The home institution will be responsible for all grade conversions and course grading scale adjustments. As these are completed, the home institution will provide a list of students and the courses they completed.

Grade changes will follow Home Institution policies and procedures

Local policies and procedures of the student's Home Institution regarding late, missing, incorrect grades, and their impact on graduation will apply. In cases where graduations at Home Institutions are earlier than the Host/Teaching Institution, students will work with Faculty Coordinators to resolve any issues that might impact graduation.

STATE SHARE OF INSTRUCTION

State Share of Instruction will remain with the home institution.

Public colleges and universities offering Regula courses will report student enrollments through regular HEI reporting mechanisms. State Share of Instruction (SSI) will flow to the home institution by agreement. Independent non-for-profit institutions will not receive state support in the form of State Share of Instruction (SSI).

FUNDING MODELS

There are several aspects to the funding model under this collaborative agreement. To assist in the implementation of the program, the Ralph Regula School of Computational Science will offer a one-time subsidy of \$3000 per course for each of the courses taught in the 2007-2008 academic year.

Each institution will collect tuition from the students taking courses taken through the Regula School. There will be no differences in course funding with native students. The home institution will collect the tuition and fees and state subsidy for those students.

Revenue will be shared with the Regula School and the institutions hosting visiting students. Tuition will be collected at the home institution for those students using their current tuition and fee structure. Payment will be made to the Regula School at a rate of \$250 per quarter credit hour for each student hosted by other institutions. Public institutions will continue to collect the State Share of Instruction for those students.

The Regula School will use 25% of the collected fees for additional course development, marketing, and administration. The balance of the fees collected for hosted students will be passed to the hosting institution.

CURRICULUM APPROVAL AND INSTITUTIONAL INVOLVEMENT

All institutions participating in this consortium are expected to play an active role in on-going curriculum development, review, and delivery.

- A) Each participating institution will offer at least one Regula School class at the institution in each academic year.
- B) Each institution will appoint one faculty representative to the statewide curriculum review committee. That committee will meet quarterly (if needed) but at least twice per year to review and approve new courses for existing consortium members or proposals for courses by new member institutions. The committee also will review the competencies required in the minor program and revise them as necessary in response to changes in the science and engineering fields.
- C) Member institutions can propose changes to the curriculum or to the consortium agreement. The changes will be considered by the statewide committee and a recommendation made to the consortium for their approval.

CURRICULUM EVALUATION

Curriculum and course reviews are the hallmarks of quality processes in higher education. Due to the nature of the content, courses in the Ralph Regula School of Computational Science have a shorter 'shelf live' than some other academic disciplines. A continuous improvement process is necessary for the strongest curriculum and the best trained students. The process shall be as follows:

A) The curriculum for the minor in computational science will be reviewed at the end of the first full year of all courses taught. A review team of faculty, students, and industry representatives will evaluate the relevance of the total curriculum and make recommendations for additions, deletions or revisions at the course level.

B) At the course level, courses and modules funded by RRSCS will be evaluated by a faculty and student peer review team on an annual basis after the first offering and then reviewed every other year The Ohio Learning Network's rubrics for online courses will be used as part of the evaluation process.

C) Courses taught by RRSCS faculty, but not funded by the School, will be examined as part of the overall curriculum review, and will be evaluated every other year by a faculty and student peer review team. This team shall contain some members from the review teams created in paragraph B above.

STUDENT SERVICES EVALUATION

An annual assessment will be made of student services related to the Ralph Regula School. The School will coordinate this effort with participating campuses to field regular surveys of students and campus administrative staff to ensure that students advising, registration, and other procedures are working satisfactorily from the student's viewpoint.

SIGNATORIES

The undersigned academic officers agree to the terms of this consortial agreement for the Ralph Regula School of Computational Science.

Ronald L. St. Pierre Acting Provost Capital University

Toy Caldwell-Colbert Provost Central State University

Kay Adkins Provost Columbus State Community College

Robert G. Frank Provost Kent State University

Helen Grove Provost Sinclair Community College Joseph A. Alutto Interim Provost The Ohio State University

Anthony J. Perzigian Provost University of Cincinnati

Kenneth W. Bladh Provost Wittenberg University

Steven R. Angle Provost Wright State University

Ralph Regula School of Computational Science Application for Host Institution Class Enrollment

Complete all items below. Sign and return the form to the registrar's office of your **home** institution. You will be registered for the class(es) at the host institution you have indicated below. You are responsible for observing all host institution registration, drop/add and withdrawal deadlines. **If enrolling in classes at more than one host institution, you must complete and submit a separate form for each**.

Name:		Soc	cial Security Nun	nber:	/	/
Last	First	Middle	D	4 6D. 4	,	,
Other name(s) used previo	usly:		Da	te of Birth	1:/ Month Day	_/ Year
Permanent Mailing Addres	SS:					
0	(Number ar	nd street. If P.O. Box, number a	nd street also required)			
City		State/Country				Zip
	E-ma	ail Address:				
Telephone:(include area c	ode)					
Gender: Female	Male Coun	try of Citizenship:				
Check if this applies:	I am a [Permanent resident	alien of the U.S.	or 🗆 Ref	Tugee or [] Asylee
Alien/File # A			Date approved:			
						Year
My most recent Visa typ	be is:		Date issued:	Month	Dav	Year
Residency: Students enrolled				mined by f	their home in	stitution.
Students enrolled in a private Most recent high school at				duation d	ate	
Most recent high school at	Name of High school	City State	012	iuuation u	ate	<u> </u>
Prior College Degree & Ins						
Thor Conege Degree & Ins						
Current Home Institution:						
Current Home Institution:	Institution for your primary reg	gistration and degree program				
Class(es) in which you are						
Class(es) in which you are	em oning.					
1) Home Course Number and Class						
Home Course Number and Class	Section Host Course Nu	umber and Class Section	Host Institution 7	Term & Year	Host Instit	ution Credit hours
2)						
Home Course Number and Class	Section Host Course Nu	umber and Class Section	Host Institution T	erm & Year	Host Instit	ution Credit hours
I affirm that the information I h of 1974, as amended (FERPA), registration and required financ release an official copy of my h course(s) to my transcript and c	I hereby authorize both my ial aid information regardin ost institution transcript at t	home institution and the g my enrollment in the c the end of the term to my	host institution fro lass(es) noted on the home institution.	m which I a is form. I al understand	m taking this c so authorize th my home insti	ourse to exchange e host institution to tution will add the
and course drop and/or withdray					5	
Applicant's Signature				Date		
			mo Institution			
	_	ompleted by the Ho	me institution			
Home institution residency s		Out-of-state				
I hereby certify that stud host institution class(es)	lent named above is in a as indicated.		g with this institut			enroll in the
Certifying Official:			Title:			
	Please P	Print				
Telephone:	Fax: _		E-mail A	ddress:		
Signature:			Date:			
						_

Appendix B

Course Number and Title	Prerequisites	Quarters offered	Credits
Math 151: Calculus and Analytic Geometry I	Mathematics 150 (with grade C- or better) or satisfactory score on Ohio State Math Placement Test	Autumn, Winter, Spring, Summer	5
Math 152: Calculus and Analytic Geometry II	Mathematics 141 or 151	Autumn, Winter, Spring, Summer	5
Math 153: Calculus and Analytic Geometry III	Mathematics 152	Autumn, Winter, Spring, Summer	5
Math 161: Accelerated Calculus with Analytic Geometry I	Math 151 or permission of dept.	Autumn	5
Math 162: Accelerated Calculus with Analytic Geometry II	Mathematics 161 or written permission of Math Counseling Office	Winter	5
Math H190: Elementary Analysis I	Permission of dept.	Autumn	5
Math H191: Elementary Analysis II	Mathematics H190 with a grade of C or better or written permission of Honors Committee chairperson	Winter	5
ChBE 790 Process Modeling and Simulation	Permission of instructor	Autumn	3
CEG 640 Civil and Environmental Systems Engineering	Permission of instructor	Autumn	4
CSE 778 Computer-Aided Design and Analysis of VLSI Circuits	CSE 560; ECE 561; 601; 675 or ECE 662	Autumn	4
ISE 521 Operations Research I: Simulation of Production Systems	ISE 500; Stat 427 and 428, or equiv	Au, Wi	5
ISE 704 Introduction to Discrete System Simulation	Stat 426 or 428	Winter	4
ME 785 Modeling, Simulation and Control of Hybrid-Vehicles	ME 784 or permission of instructor	Winter (Offered even numbered Years)	4
MSE 533 Modeling of Materials Processing Methods	MSE 525 and 526, Matsc&en major or permission of instructor	Spring	3
CSE 202 Introduction to Programming and Algorithms for Engineers and Scientists	Math 151	Su, Au, Wi, Sp	4

Course Number and Title	Prerequisites	Quarters offered	Credits
CSE 221 Software Development Using Components	Math 151 or 161/H161 or H190; 201 or 202 or 203 or 204 or En Graph 167 or Engineer H192 or CS&E Placement Level A	Su, Au, Wi, Sp	4

CSE 294P Group Studies		Su, Au, Wi, Sp	1-5
AAE 581 Numerical Methods in Aerospace Engineering	En Graph 167, 580	Autumn	3
CEG 406 Professional Aspects of Civil and Environmental Engineering	Civil en or Env Eng major; must be taken as soon as possible upon entering the major	Wi, Sp	1
CSE 541 Elementary Numerical Methods	CSE 221/H221 or 230 or 502; Math 153	Su, Au, Wi, Sp	3
ECE 715 Introduction to Numerical Methods for Electromagnetics	ECE 301, and Math 568 or 571; or grad standing	Autumn	3
Math 606 Introduction to Numerical Analysis of Partial Differential Equations	Math 512 and 572 or equiv with permission of instructor	Sp	3
Math 607 Essentials of Numerical Analysis	Math 548 or 652 or permission of the Graduate Studies Committee	Wi	5
ME 250 Numerical Methods and Analysis in Mechanical Engineering	Math 415 or 255; and enrollment in engineering major	Au, Wi, Sp	4
CBE 781 Chemical and Biomolecular Engineering Optimization	En Graph 167 or equiv or permission of instructor	Sp	3
CEG 776 Network Algorithms in Transportation Systems	CEG 405, 540, and En Graph 167 or Cptr/Inf 201 or Cptr/Inf 221 or equiv. Students should have familiarity with a programming language such as FORTRAN, BASIC, Pascal or C	Wi	5
ECE 759 Numerical Optimization for Electrical Engineers	ECE 352	Au	3
ISE 522 Operations Research II: Fundamentals of Linear Optimization with Applications	ISE 500, Math 254, 415 or 255, and 568 or 571. Working knowledge of Excel	Au, Wi	3
ME 761 Optimization in Mechanical Design	ME 562 or 563 or permission of instructor	Spring	3
MSE 600 Materials Selection and Performance I	Sr standing in MatSc&En or Ceram En or Metal En or permission of the instructor	Wi	3

Course Number and Title	Prerequisites	Quarters offered	Credits
CE 660 Civil Engineering Capstone Design	Sr standing. Must be taken as close to graduation as possible	Au, Wi, Sp	4
CSE 699 Undergraduate Research in Computer Science and Engineering		Su, Au, Wi, Sp	1-5
CSE H783 Honors Research	Honors standing; permission of instructor	Su, Au, Wi, Sp	1-5
ME 564 Senior Design Group Project	ME 510; a second writing course and prereq or concur: 563	Au, Wi, Sp	3

ME 565.01 Mechanical Engineering Design	ME 562 and 2nd writing course, 3.4 or higher GPA or permission of instructor	Au	3
ME 565.02 Mechanical Engineering Design	ME 565.01	Wi, Sp	3
ME 565.03 Mechanical Engineering Design	ME 565.02	Au, Sp	3
MSE 695.01 Senior Design Project I	Sr standing in MSE or the physical sciences	Au, Wi, Sp	1
MSE 695.02 Senior Design Project I I MSE 695.03 Senior Design Project I I I	MSE 695.01 Sr standing in MatSc&En and MatSc&En 695.02	Au, Wi, Sp Au, Wi, Sp	1
CSE 630 Survey of Artificial Intelligence I: Basic Techniques	CSE 222/H222 or 230 or 502; Math 366	Au, Wi, Sp	3
CSE 655 Introduction to the Principles of Programming Languages	CSE 560 and 625	Su, Au, Wi, Sp	4
CSE 660 Introduction to Operating Systems	CSE 560; 675 or ECE 662; Stat 427	Su, Au, Wi, Sp	3
CSE 670 Introduction to Database Systems I	CSE 314 or 222 or 230 or 502; Math 366	Su, Au, Wi, Sp	3
CSE 675.01 Introduction to Computer Architecture	360 or ECE 265; Math 366; ECE 261	Au, Wi, Sp	3
CSE 675.02 Introduction to Computer Architecture	360 or ECE 265; Math 366	Su, Au, Sp	4
CSE 680 Introduction to Analysis of Algorithms and Data Structures	CSE 560 or 668 or ECE 668; Stat 427; Math 566	Su, Au, Wi, Sp	3
CSE 621 Introduction to High- Performance Computing	CSE 541; Math 568 or Math 571 or Math 601. Course is well suited to grad students from science/engineering in addition to CS&E students	Au	3
CSE 694LGroup Studies		Su, Au, Wi, Sp	1-5

Course Number and Title	Prerequisites	Quarters offered	Credits
Chem 644 Computational Chemistry	Chem 252	Au	3
MSE 756 Computational Materials Modeling	Permission of instructor	Au	3
Phys 780			
Math 255 Differential Equations and Their Applications	Math 254	Su, Au, Wi, Sp	5
Math 415 Ordinary and Partial Differential Equations	Math 254	Su, Au, Wi, Sp	4

Math 568 Introductory Linear Algebra	Math 254 or equiv with written permission of dept	Su Term 1, Au, Wi, Sp	3
Math 571 Linear Algebra for Applications I	Math 254	Su Term 1, Au, Wi, Sp	3